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Plant–fungal partnership or mycorrhiza is one of 
the world’s most ancient and widespread symbioses 
(Werner and Kiers 2015). Despite reciprocal benefits 
and non-persistence of mutualisms, conflicts among 
partners can arise. Two potential trajectories towards 
evolutionary breakdown of their co-operation are: (i) 
symbiont switching and (ii) mutualism abandonment. 
Plants stop interacting with the arbuscular mycorrhizal 
fungi (AM Fungi) when they find other mutualists 
or develop alternative strategies to extract nutrients 
from the environment. Instances of the former 
include mutualisms with ectomycorrhizal fungi, 
orchidaceous mycorrhizae or plant growth-promoting 
rhizobacteria (PGPR) while those of the latter include 
plants opting to carnivory, parasitism, or developing 
adaptations such as root hair/cluster roots. The loss 
of key functional genes (in due course of evolution) 
that are involved in encoding root mutualism effectors 
has been found to make noteworthy contributions. 
The breakdown could also be favoured by a range 
of factors such as environmental changes, habitat 
shifts, migration, invasion, or partner abundance. 
Dual symbiosis, although evolutionarily unstable, 
has been found to be a transitory state on the path 
towards a complete switch and breakdown of the 
original mutualism. Another potential reason is when 
low-quality partners or parasites arise in one of the 
lineages. Thus, this can drive the interaction from 

mutualism to parasitism and cause the other partner 
to abandon the interaction. It has also been found 
that some plants abandon the mutualism completely 
because of at least one of the aforementioned reasons 
while some others re-establish the mutualism either 
in time (that is, the same generation that gave up the 
partnership reverts back to the old lifestyle with the 
same fungus or a new partner), or several generations 
later. The fact that cooperation among plants and AM 
fungi has persisted in a highly stable state for more 
than 350 million years illustrates the importance of 
the mutualistic services provided by AM fungi to most 
host plant species (Werner, Cornelissen, Cornwell, 
et al. 2018). However, even ancient and versatile 
mutualists like AM fungi can be completely and 
permanently lost under certain circumstances and 
need to be studied in depth.
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Physiological Studies on Cantharellus sp., an Ectomycorrhizal 
Mushroom from Central India
Rohit Sharmaa,c, Akhilesh K Pandeyb,c, and  Ram C Rajakc (Late)

Introduction
A single-root system of an individual ectomycorrhizal 
(ECM)-dependent plant is simultaneously associated 
with many different ECM fungal species and different 
individuals of the same species (Guidot, Verner, 
Debaud, et al. 2005). Furthermore, although a host 
plant is permanently associated with ECM fungi, 
its properties such as composition, species richness, 
and diversity of associated ECM fungal community 
undergo change during the course of forest ageing as 
well as in response to various disturbances associated 
with ecosystem such as N deposition (Smith, Molina, 
Huso, et al. 2002; Peter, Ayer, Egli 2001; Lilleskov, 
Fahey, Horton, et al. 2000; Avis, McLaughlin, 
Dentinger, et al. 2003). Functional diversity needs to 
be evaluated to understand the functioning of ECM 
symbiosis under field conditions. Different ecological 
and physiological factors affect growth of ECM fungi 
and also the process of mycorrhiza formation (Bowen 
1994). Physical characteristics and nutrients of soils, 
especially C and N sources, greatly influence the 
establishment and growth of ECM fungi in field and 
also in controlled conditions in laboratory (Lilleskov, 
Fahey, Horton, et al. 2000). Influence of N, C, P, pH, 
temperature, and water stress on growth of ECM fungi 
has been analysed by many authors (Rangel-Castro, 
Danell, Taylor 2002; Sawyer, Chambers, Cairney 
2003b,c; Sarjala 1999; Sawyer, Chambers, Cairney 
2003a; Sanchez, Honrubia, Torres 2001). 

An important function that ECM fungi perform 
is to explore soil to find new sources of N and 
subsequently use them. ECM fungi differ in their 
physiological capacities to acquire and transfer N to 
a range of plant hosts. The ability of ECM fungi to 
access organic sources of N is of practical interest, as 
in absence of ECM fungi these N sources would not 
be available to plant hosts. Quantitative differences in 
utilization of inorganic and organic N sources have 
been documented both between ECM fungal species 
and also between strains belonging to same species 
(Anderson, Chambers, and Cairmey 1999; Rangel-

a National Centre for Microbial Resource, National Centre for Cell Science, S P Pune University, Ganeshkhind, Pune – 411 007, Maharashtra, India; 
Email: rohit@nccs.res.in

b Madhya Pradesh Private University Regulatory Commission Gyan Watika, Near Excellence College, Walmi Road, Kaliasot Dam, Bhopal, Madhya 
Pradesh, India; Email: akpmycol@yahoo.co.in

c Department of Biological Sciences, R D University, Jabalpur – 482 001, Madhya Pradesh, India; Email: rcmykes@yahoo.com

Castro, Danell, Taylor 2002; Sawyer NA, Chambers, 
and Cairney 2003a,b,c).

It has been well established that symbiosis 
between fungi and trees is essential for fulfilling P 
nutrition of the trees, especially on soils low in P 
concentration. Phosphatase activity in mycorrhizal 
fungi varies with species. Although rate of excretion 
depends largely on composition of growing medium, 
variation may also occur with fungal species. 
Wallander, Johansson, and Pallon (2002) carried 
out particle-induced X-ray emission (PIXE) analysis 
of element contents and concluded that ECM 
Rhizopogon species has the ability to mobilize P and 
K to host trees. Study of availability of P (inorganic 
versus organic), after response of host plants to ECM 
was carried out by Baxter and Deighton (2001). A 
large fraction of the P in most temperate forest soils 
occurs in organic forms, such as inositol phosphates, 
nucleic acids, and phospholipids. Host’s access to 
organic P sources depends on its association with 
a range of ECM fungi that produce extracellular 
enzymes, capable of acquiring P in organic forms.

Enhancement in nutrient uptake is beneficial 
for host’s and symbiont’s growth, however, in high 
concentrations, both essential and non-essential 
elements may be toxic. In fact, in some cases, 
excessive uptake could be deleterious. Moreover, 
accumulation of heavy metals in soil adversely affects 
formation and development of ECM of tree species. 
The isolation of metal-tolerant ECM fungi from 
polluted sites has been well-documented (Colpaert 
and Ticheler 1996). Axenic screening provides a 
rapid evaluation of metal tolerance in ECM fungi 
and demonstrated differential tolerances to metals 
(Hartley, Cairney,  Meharg, et al. 1997a,b). It has 
been found that, tolerance to zinc and cadmium 
(Colpaert and van Assche 1992a,b) or aluminum 
(Egerton–Warburton and Griffin 1995) is higher 
in ECM isolates from metal-contaminated soils in 
comparison to non-contaminated soils. Responses of 
ECM fungi to toxic metals are important parameters 
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for developing strategies of reclamation of polluted 
sites, besides they influence plant growth and 
productivity. Hence, in this work, we studied the 
effect of different C and N sources, pH, temperature, 
minerals and heavy metals, growth regulators and 
vitamins to study growth of ECM fungi in pure 
culture of Cantharellus.

Materials and Method
Modified Melin-Norkrans (MNM) and Malt 
Extract Agar (MEA) media were used for inocula 
preparation on agar plates. These were adjusted to 
pH 5.6±0.02 with 1N HCl or 0.5 and 4M NaOH and 
sterilized before plating. The pH value was measured 

with a glass electrode pH meter (India, Systronics 
320).  The culture for inoculum preparation was 
raised on MNM and MEA media in Petri dish after 
incubation at 26±2oC for 14 days. The mycelium 
was grown in Petri dish for 14 days and 9 mm disc 
was used as inocula by inoculating the 150 mL 
flask containing 50 mL of sterilized liquid medium. 
Vegetative growth of mycelium on liquid medium 
was observed by measuring the dry fungal biomass 
of the colony. Mycelial dry weight was measured 
by oven drying at 80±2oC for 48 h (Rangel–Castro 
2002; Yamanaka 2003). The pH value of the medium 
also was measured at the end of the experiment. 
Three replicates and one control were taken for 
each set of observation. Differences in dry weight 
production, final pH of the remaining culture solution 
were analysed on the basis of calculated mean and 
standard deviation. To test whether different factors 
considered in the present study affected Cantharellus 
sp. response on mycelial growth in terms of dry weight 
production, one-way analysis of variance (ANOVA) 
was used to analyse experimental data. Significant 
differences between treatments were determined by 
least significant difference (LSD) test. The statistical 
analysis was confirmed using Statview software.

Evaluation of Basal Medium
The culture of Cantharellus sp. was grown on 20 
different liquid media to evaluate the best medium for 
mycelial growth. Inoculated flasks were incubated for 
15 days and dry fungal biomass was measured. The 
final pH of the liquid media was recorded immediately 
after harvesting and executing other investigations 
on best-suited medium before conducting cultivation 
experiments (Sharma 2008).

Effect of Physical Factors
The inoculated flasks were incubated at 5–45 ± 2oC 
for 15 days in an incubator and dry fungal biomass 

was measured. The effect of pH on vegetative mycelial 
growth was studied by adjusting best-suited liquid 
medium at different pH levels (±0.02), ranging in 
1–12. The pH was adjusted with 1N HCl or 0.1M 
and 4M NaOH. The selected liquid medium was 
inoculated with mushroom culture and 
was given continuous light, dark, and intermittent 
(that is, 12:12 h light and dark) treatment at optimum 
temperature and pH. 

Effect of Carbon and Nitrogen
Carbon (C) and nitrogen (N) requirements were 
studied by replacing D-glucose and ammonium 
chloride from FDA liquid medium by substituting with 
different carbon and nitrogen sources. The selected 
medium (FDA medium) was to be supplemented  
separately with desired C compounds including 
7 monosaccharides, 3 disaccharides, 1 trisaccharide, 
3 polysaccharides, 5 organic acids, and 2 alcohols. 
The quantities were determined on the basis of their 
molecular formulae so as to furnish an equal amount 
of carbon as was present in 0.5 g of D-glucose 
FDA broth. The polysaccharides were added at 
0.5 g L–1. Similarly, the quantities of N compounds 
were evaluated on the basis of N present in 0.5 g of 
ammonium chloride. The selected medium (FDA 
Medium) was supplemented separately with different 
N compounds (23 N sources including 10 inorganic, 
10 amino acids, and 3 organic acids). One control 
flask each with no carbon and nitrogen source was 
also maintained.

Effect of Mineral and Trace Elements
Studies were also carried out to investigate the effect 
of magnesium (Mg), Phosphorus (P), Potassium (K), 
and Sulphur (S) on the mycelial growth of mushroom 
culture. This was done by growing the mushroom 
culture in a complete mineral medium and in various 
mineral deficient media. One control flask each with 
no mineral and trace element was also maintained.

Effect of Different Vitamin Sources
Five vitamins with four different concentrations were 
studied to find out their effect on mycelial growth. The 
best-selected liquid medium was supplemented with 
five vitamin sources at four concentrations (5, 10, 15, 20 
µg/L). The stock solutions of all vitamins except biotin 
were prepared in double-glass distilled water and stored 
at 5±2°C in refrigerator. The stock solution of biotin 
was prepared in 5 mL of 50% ethanol and volume made 
up with double-glass distilled water. Five millilitres 
of each of these concentrations were used in the best-
selected liquid basal medium to study their effect. 
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Effect of Different Growth Regulators
Four growth regulators at four different concentrations 
were used to assess their effect on mycelial growth of 
Cantharellus. The stock solutions of growth regulators 
except gibberellic acid were prepared in double-
distilled water and stored at 5±2°C in refrigerator. 
Gibberellic acid was first dissolved in 5 mL HCl and 
then the required concentrations were prepared (10 
µg/L). Five millilitre of each of these concentrations 
was used in the best-selected liquid basal medium to 
study their effect.

Results

Evaluation of Basal Media
As there was no previous data on in vitro growth of 
Cantharellus sp., starting point in present study was to 
select the best-suited medium for the growth of this 
fungus. Figure 1 shows 21 different ECM broth tested 
for the growth of Cantharellus sp. The best growth 
of Cantharellus sp. isolate in terms of dry mycelial 
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weight was significantly high (P<0.05) on Ferry Das 
(FD medium), followed by Chanterelle medium and 
Nutrient solution. However, no significant difference 
was observed between Hagem’s, GYP, PACH, and 
Yeast peptone glucose media. Therefore, FD medium 
was selected as best-suited medium for further studies. 

Effect of Physical Factors
Cantharellus sp. generally grows in different soil 
texture with slightly acidic pH, close to 5–6.5±0.02. 
The results in Figure 2 indicate that 5.5±0.02 was 
the optimum pH for the growth of Cantharellus 
sp. Within 5.5 and 6.0, there was no significant 
difference (P<0.05) in mycelial growth. However, it 
showed moderate to rapid growth over a pH range 
of 2–12±0.02. Temperature studies indicated that 
growth, estimated as dry weight, was better at 30±2oC 
(significantly high at P<0.05) and 25±2oC than at 
20±2oC for Cantharellus sp. (Figure 3). In the present 
study, the results obtained (Figure 4) revealed that 
mycelial growth of Cantharellus sp. differed with 

Figure 1 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different media

Note Bars indicate standard deviations. LSD is significant at P<0.05.
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Figure 2 Mycelial growth of Cantharellus sp. after 15 d, and final pH values with different initial pH

Note Bars indicate standard deviations. LSD is significant at P<0.05.

Figure 3 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values at different temperatures

Note  Bars indicate standard deviations. LSD is significant at P<0.05.

exposure to different light conditions, as indicated by 

the significant high mycelial dry weight on exposure 

to intermittent period of 12 h light and dark.
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When oxalic acid was used as the sole C source in 
medium, Cantharellus sp. isolate completely failed to 
grow. CMC, d-xylose, and ascorbic acid (significantly 
different at P<0.05) were the optimal C source for 
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Figure 4 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different light conditions

Note Bars indicate standard deviations. LSD is significant at P<0.05.

Figure 5 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different C sources

Note Bars indicate standard deviations. LSD is significant at P<0.05.
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the mycelial growth and minimum mycelial growth 
was recorded in two alcohols tested (not significantly 
different at P<0.05) (Figure 5).
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Figure 6 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different N sources

Note Bars indicate standard deviations. LSD is significant at P<0.05.

The Cantharellus sp. isolate showed appreciable but 
different patterns of growth and N utilization on all 
N sources provided. Cantharellus sp. grew well on 
medium containing ammonium in various forms 
supplied singly. The changes in pH of culture medium 
reflected very closely the uptake of the different 
N sources. Although, biomass was quite high on 
the nitrate treatment, there was no increase in the 
pH of the culture solution, which suggests limited 
assimilation of nitrate. The results in Figure 6 show 
that Cantharellus sp. had a preference for ammonium. 
It utilized the ammonium compounds, ammonium 
phosphate, ammonium citrate, ammonium nitrate, 
ammonium oxalate, ammonium tartrate, and 
ammonium sulphate. No significant difference in 
fungal dry weight was observed when grown with 
yeast extract, malt extract, ammonium chloride, 
l-asparagines, dl-valine, dl-phenylalanine, dl-asparatic 
acid and dl-glutamic acid.

Differences in fungal biomass were observed 
in all substituted phosphorus sources. However, 
di-ammonium hydrogen phosphate produced 
significantly higher (P<0.05) fungal biomass 
(Figure 7). Amongst the heavy/trace elements, best 
results were obtained with manganese sulphate and 
magnesium sulphate, followed by copper sulphate 
and ferric chloride, as shown in Figure 8. However, 

the control flask which did not had any heavy metal 
produced significantly higher (P<0.05) dry mycelial 
biomass. Observations on the effect of vitamins are 
depicted in Figures 9–11. The significantly high 
mycelial growth in three concentrations was recorded 
with thiamine HCl (5 µg/L) and carnitine chloride 
(10 µg/L, 15 µg/L). Results on the effect of growth 
regulators on C. tropicalis growth are shown in Figures 
12–14. Highest mycelial growth was recorded in 
gibberellic acid (10 µg/L, 20 µg/L, 30 µg/L), which was 
significantly higher (P<0.05) than the others, followed 
by kinetin.

Discussion
Amongst the mycorrhiza-forming fungi, only ECM 
and ericoid mycorrhizal fungi can be grown in pure 
culture (Jakobsen 1996). Study of the physical and 
physiological factors of these fungi could be a key 
for analysing the mechanism of their symbiosis with 
host plants. These studies might reveal features of 
their survival and colonization in soil. ECM fungi 
vary widely in their ability to gain access and utilize 
C compounds. A wide variety of C sources including 
carbohydrates, organic acids, amino acids along with 
their derivatives and some polycyclic compounds 
are used by fungi (Shukla, Rahi, Rajak, et al. 2005). 
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In the present investigation, Cantharellus sp. utilized 
CMC, d-xylose, and ascorbic acid (significantly 
different at P<0.05) for maximum mycelial biomass 
and two alcohols tested produced minimum mycelial 
biomass (Figure 5). Most of the workers have 
reported mannitol as the most generally utilizable 
C source. According to Taber and Taber (1987), 
three isolates of Pisolithus tinctorius grew poorly on 
selected C sources than non-mycorrhizal fungi. The 
C utilization pattern did not change significantly with 
changes in composition of basal medium or inoculum 
preparation, however, the pattern changed with culture 
medium pH and addition of small amounts of glucose. 
In another study by Berredjem, Garnier, Prima Putra, 
et al. (1998), glucose and maltose in mixture (20:5) 
were found to be the most effective carbohydrates 
for promoting growth of Lactarius bicolor, followed 
by starch, dextrins, maltose, glucose, and sorbitol. 
However, it did not grow when the medium contained 
sucrose or galactose as C source.  Daza, Manjón, 
Camacho, et al. (2006) also studied the effect of C on 
in vitro growth of several isolates of Amanita caesarea.

Nitrogen eutrophication of forest ecosystems 
via atmospheric N deposition is an important factor 
in the decline of ECM sporocarp production and 
species richness (Treseder and Allen 2000; Taylor, 
Martin, Read 2000; Rangel–Castro, Danell, Taylor 
2002). In the present study, Cantharellus sp. utilized 
ammonium compounds (significantly different at 
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Figure 7 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different P sources

Note Bars indicate standard deviations. LSD is significant at P<0.05.

P<0.05). Although, biomass was also quite high when 
medium was supplemented with nitrate as N source 
whereas no significant difference in fungal dry weight 
was observed with other N sources (Figure 6). The 
findings agreed broadly with the results reported 
for other ECM fungi (Guidot, Verner, Debaud, et 
al. 2005). Ammonium is generally recognized as the 
most readily utilizable source of N for most ECM 
fungi (Smith and Read 1997) and results from present 
study with Cantharellus sp. support this assertion. The 
results also confirm the work of Straatsma and van 
Griensven (1986) who reported that ammonium is a 
suitable source of N for ECM mushrooms. Utilization 
of ammonium by Pisolithus involutus have been 
shown in several in vitro studies (Finlay, Forestgård, 
Sonnerfeldt 1992; Kieliszewska-Rokicka 1992). 
Utilization of ammonium by Cantharellus sp. indicates 
that these species are tolerant to high concentrations 
of inorganic N (nitro tolerant) which is in accordance 
with field observations of Baar and Kuyper (1993) 
and Daza, Manjón, Camacho, et al. (2006). Other 
ECM fungi were reported to grow on nitrates (Smith 
and Read 1997). Daza, Manjón, Camacho, et al. 
(2006) have reported utilization of albumin bovine 
and nitrate utilization as N source by Amanita 
caesarea (Scop.:Fr.) Pers. associated with Quercus 
suber Linn. and Castanea sativa. Some ECM fungi 
can readily utilize a wide range of amino acids (Finlay, 
Forestgård, Sonnerfeldt 1992; Keller 1996;  Dickie, 
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Figure 8 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different heavy metals. 

Note Bars indicate standard deviations. LSD is significant at P<0.05.

Figure 9 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different vitamins (5 µg/L)

Note Bars indicate standard deviations. LSD is significant at P<0.05.

Koide, Steven 1998) while some have the capability to 
grow on more complex organic N sources, including 
proteins (Finlay, Forestgård, Sonnerfeldt, et al. 
1992; Keller 1996; Anderson, Chambers, Cairmey 
1999; and chitin (Leake and Read 1990). Many 
investigations have analysed the influence of N on 
the growth of ECM fungi (Baar, Comini, Elferink, 
Kuyper,  et al. 1997; Chalot and Brun 1998; Dickie, 
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Koide, Steven,  et al. 1998; Rangel-Castro, Danell, 
Taylor 2002,  Sarjala 1999).

Vitamins are not only known to perform catalytic 
functions, they significantly influence mushrooms’ 
growth as well (Shukla, Rahi, Rajak, et al. 2005.
Observations recorded on the effect of vitamins 
show significantly high mycelial growth in three 
concentrations, that is, thiamine HCl (5 µg/L) and 
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carnitine chloride (10 µg/L, 15µg/L) (Figure 9). 
According to Ishikawa (1967) thiamine was found to 
be stimulating for mycelial growth of Lentinus edodes 
(Berk.) Sing. (non-ECM mushroom).

The effect of any growth factor depends on its 
concentration of application and type of ECM fungal 
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Figure 10 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different vitamins (10 µg/L)

Note Bars indicate standard deviations. LSD is significant at P<0.05.

Figure 11 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values with different vitamins (15 µg/L)

Note Bars indicate standard deviations. LSD is significant at P<0.05.

species. Results presented in Figure 10 recorded 
gibberellic acid (10 µg/L, 20 µg/L,30 µg/L) as the 
best utilized growth regulator (significantly high 
at P<0.05).  Several growth factors have also been 
reported to exert stimulatory effect on fungal growth 
and activities (Kaur and Lakhanpal 1995). Similarly,  
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Figure 12 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values of media with different growth regulator (10 µg/L)

Note Bars indicate standard deviations. LSD is significant at P<0.05.

Figure 13 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values of media with different growth regulator (20 µg/L)

Note Bars indicate standard deviations. LSD is significant at P<0.05.

Nakamura, Kawanabe, Takiyama, et al. (1978) too 
reported that indole acetic acid (IAA) and gibberellic 
acid produce stimulatory effect on vegetative 
growth of mycelium of Lentinus tigrinus (Bull.) 
(non-ECM mushroom).
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Interspecific variations have been demonstrated in 
a number of studies of axenically cultured ECM 
fungi. In the present study, best mycelial growth was 
observed in medium substituted with magnesium 
sulphate and manganese sulphate as shown in 
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Figure 8. In one study, all isolates of Pisolithus involutus 
were found to be less tolerant to Zn than any of those 
of Amanita muscaria. Scleroderma citrinum was less 
tolerant to Cu than Pisolithus involutus and Laccaria 
laccata (Howe, Evans, Ketteridge, et al. 1997). Laccaria 
proxima (Boud.) Pat. appeared to be less sensitive to 
Ni than Scleroderma flavidum (Jones and Hutchinson 
1986). Growth stimulations of ECM isolates by Cu 
and Ni have already been demonstrated by Jones and 
Hutchinson (1988) and McCreight and Schroeder 
(1982). Possible mechanisms for passive binding, 
or metabolic detoxification which can lead to metal 
tolerance in ECM fungi are discussed by several 
workers (Hartley, Cairney, and Meharg 1997a; 
Tilstone, Macnair, and Smith 1997).

Tolerant behaviour of mycobiont may be an 
important factor in conferring plant tolerance 
(Colpaert and van Assche 1987; Blaudez, Jacob, 
Turnau, et al. 2000). The higher metal concentrations 
which inhibit growth of non-mycorrhizal tree species 
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Figure 14 Mycelial growth of Cantharellus sp. after 15 d, and initial and final pH values of media with different growth regulator (30 µg/L)

Note Bars indicate standard deviations. LSD is significant at P<0.05.

are, however, generally far lower than those which 
inhibit growth of ECM fungi in pure culture, and 
consequently this axenic screening could in some 
cases predict which fungi will increase host tolerance. 
Moreover, there has not been any study of heavy 
metal interactions in ECM fungi in symbiosis with 
host plants (Hartley-Whitaker, Cairney, and Meharg 
2000), and this research is needed to further clarify 
the role of ECM fungi in metal sensitivity of plants.
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1. Proteomics to identify the interactions among 
mycorrhiza 

 (French K. 2017. Engineering Mycorrhizal 
Symbioses to Alter Plant Metabolism and Improve 
Crop Health. Frontiers In Microbiology, 8. doi: 
10.3389/fmicb.2017.01403)

Proteomics is an emerging field which can enable 
the identification of specific proteome in associated 
cellular processes. It can also help to locate specific 
protein modifications, often leading to assessment of 
protein abundance or their expression during different 
processes in living systems. To identify the symbiotic 
associations amongst fungal and plant counterparts 
and involvement of specific protein groups in the 
process, proteomics can be utilized. It could be one of 
the key techniques which can unravel the key incidents 
and associations during a mycorrhizal symbiosis.

2. Computational biology for enhanced symbiosis 
 (Chiapello M, Perotto S, and Balestrini, R. 2015. 

Symbiotic Proteomics — State-of-the-Art in 
Plant–Mycorrhizal Fungi Interactions. Recent 
Advances in Proteomics Research. doi: 
10.5772/61331)

The symbiotic association between fungus and plant is 
one of the key aspects of mycorrhiza. Computational 
biology is an efficient tool which can be globally used 
for enhancing the sustainability of the agricultural 
systems. By employing computational studies, specific 
locations of the genomes indicating genes which are 
specifically involved in the symbiosis process can 
be identified. These locations can further be 
modified to enhance symbiosis. It is an effective 
option which can assist in promising research to boost 
agricultural productivity.

new appRoaches

New Approaches and Techniques
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The latest additions to the network’s database on mycorrhiza are published here for the members’ information. The 
list consists of papers from the following journals:

 � Agricultural Water Management 
 � Chemosphere 
 � Ecological Engineering 
 � Ecotoxicology and Environmental Safety
 � Environmental and Experimental Botany
 � European Journal of Agronomy 
 � European Journal of Soil Biology 
 � Field Crops Research
 � Fungal Biology
 � Fungal Ecology
 � Industrial Crops and Products 

 � Journal of Environmental Management 
 � Journal of Integrative Agriculture
 � Journal of Plant Physiology  
 � Mycorrhiza 
 � Pedobiologia
 � Plant Physiology and Biochemistry
 � Rhizosphere 
 � Science of The Total Environment 
 � Scientia Horticulturae 
 � Soil Biology and Biochemistry

Recent RefeRences

Name of the author(s) and year 
of publication

Title of the article, name of the journal, volume number, issue number, page 
numbers (address of the first author or of the corresponding author, marked 
with an asterisk)

Adam B Cobb*, Gail W T Wilson. 
2018

Influence of smallholder farm practices on the abundance of arbuscular 
mycorrhizal fungi in rural Zambia
Pedobiologia 69: 11–16

[*Oklahoma State University, 008C AGH, Stillwater, OK, 74078, USA]

Aída M Vasco-Palacios*, 
Johnathan Hernandez, María 
Cristina Peñuela-Mora, Ana E 
Franco-Molano, TeunBoekhout. 
2018

Ectomycorrhizal fungi diversity in a white sand forest in  
western Amazonia 
Fungal Ecology 31: 9–18

[*Fundación Biodiversa Colombia, Carrera 22 # 41–80 Apto. 004, 111311, Bogotá 
DC, Colombia]

Alireza Pirzad*, Sevil 
Mohammadzadeh. 2018

Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula 
officinalis, Rosmarinus officinalis and Thymus vulgaris) 
Agricultural Water Management 204: 1–10

[*Department of Agronomy, Faculty of Agriculture, Urmia University, Urmia, Iran]

Babacar Thioye*, Hervé Sanguin, 
Aboubacry Kane, Sergio Maniade 
Faria, DioumacorFall, YvesPrin, 
DiaminatouSanogo, Cheikh 
Ndiaye, Robin Duponnois, Samba 
NdaoSylla, Amadou MustaphaBâ. 
2019

Impact of mycorrhiza-based inoculation strategies on Ziziphus mauritiana 
Lam. and its native mycorrhizal communities on the route of the Great Green 
Wall (Senegal) 
Ecological Engineering 128: 66–76

[*Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, 
BP 1386 Dakar, Senegal]

Cheng-Gang Ren*, Cun-Cui 
Kong, Shuo-Xiang Wang, 
Zhi-Hong Xie. 2019

Enhanced phytoremediation of uranium-contaminated soils by arbuscular 
mycorrhiza and rhizobium 
Chemosphere 217: 773–779

[*Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, 
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 
264003, PR China]

ClaudiaRuta*, Anna Tagarelli, 
Angela Campanelli, Giuseppe De 
Mastro. 2018

Field performance of micropropagated and mycorrhizal early globe 
artichoke plants 
European Journal of Agronomy 99: 13–20

[*Department of Agricultural and Environmental Science, University of Bari “A. 
Moro”, Bari- via Amendola, 165/A - 70126, Italy]
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Ella Thoen*, Anders B Aas, Unni 
Vik, Anne K Brysting, Inger 
Skrede, Tor Carlsen, Håvard 
Kauserud. 2019

A single ectomycorrhizal plant root system includes a diverse and 
spatially structured fungal community 
Mycorrhiza 29 (3): 167–180 

[*Section for Genetics and Evolutionary Biology (EVOGENE), Department of 
Biosciences, University of Oslo, Norway]

Fabian Carriconde*, Monique 
Gardes, Jean-Michel Bellanger, 
Kelly Letellier, Sarah Gigante, 
Véronique Gourmelon, ThomasI 
banez, Stéphane McCoy, Julie 
Goxe, Jennifer Read, Laurent 
Maggia. 2019

Host effects in high ectomycorrhizal diversity tropical rainforests on 
ultramafic soils in New Caledonia 
Fungal Ecology 39: 201–212

[*Institut Agronomique néo-Calédonien (IAC), « Equipe Sol & Végétation » (SolVeg), 
BP 18239, 98800, Nouméa, New Caledonia]

Franklin  M Scrase*, Fergus L 
Sinclair, John F Farrar, Paulo S 
Pavinato, Davey L Jones. 2019

Mycorrhizas improve the absorption of non-available phosphorus by the green 
manure Tithonia diversifolia in poor soils  
Rhizosphere 9: 27–33
[*Environment Center Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK]

Giulia Conversa*, Corrado 
Lazzizera, Antonio Eugenio 
Chiaravalle, Oto Miedico, Anna 
Bonasia, Paolo La Rotonda, 
Antonio Elia. 2019

Selenium fern application and arbuscular mycorrhizal fungi soil inoculation 
enhance Se content and antioxidant properties of green asparagus (Asparagus 
officinalis L.) spears 
Scientia Horticulturae 252: 176–191

[*Department of the Science of Agriculture, Food and Environment (SAFE), 
University of Foggia, via Napoli 25, 71100 Foggia, Italy]

Guangjuan Cui*, Shaoying Ai, 
Kang Chen, Xiurong Wang. 2019
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foRthcoming events 
confeRences, congResses, seminaRs, 
symposiums, and woRkshops

Rome, Italy 
May 2–3, 2019

ICMFE 2019 : 21st International Conference on Mycology and Fungal Ecology 
 
Website: https://waset.org/conference/2019/05/rome/ICMFE

São José dos Campos, 
SP, Brazil 
May 20–23, 2019

III International Symposium on Fungal Stress – ISFUS

Website: https://isfus2019.wordpress.com

Berlin, Germany 
May 21–22, 2019

ICMFFB 2019 : 21st International Conference on Mycology, Fungi and Fungal Biology 
 
Website: https://waset.org/conference/2019/05/berlin/ICMFFB

Mérida, Mexico 
June 30–July 5, 2019

International Conference on Mycorrhizae (ICOM 10) 
 
Email: icom10@ciencias.unam.mx 
Website: http://icom10.org/

Osaka, Japan 
July 15–16, 2019

Mycology Congress:  4th World Mycology & Mushroom Congress 
 
Email: mycologycongress@insightsummits.com 
Website: https://www.asianmeetings.net/conferences/mycology

Vienna, Austria 
August 19–20, 2019

14th International Conference on Microbial Interactions & Microbial Ecology 
 
Website: https://microbialinteractions.expertconferences.org/

Tokyo, Japan 
August 19–20, 2019

Global Summit on Agriculture & Organic farming  
Theme: A Sustainable Eco-friendly Agricultural Approach to Crop Improvement

Email: agriculture@conferenceint.com 
Website: https://agriculture.agriconferences.com

Singapore 
August 21–22, 2019 

7th World Congress on Earth and Environmental Science 
Theme: An Insight into the Recent Advancements in Earth and Environmental Science

Email: earthscience@conferencesseries.org 
Website: https://geology.earthscienceconferences.com/

Warsaw and Białowieża, 
Poland 
September 16–21, 2019

XVIII Congress of European Mycologists 

Email: polskietowarzystwomykologiczne@gmail.com
Website: https://xviiicem.pl/

Madrid, Spain 
October 7–8, 2019

7th Global Summit on Plant Science 
 
Email: plantscience@conferenceseries.net  
Website: https://europe.plantscienceconferences.com/

Madrid, Spain 
October 7–8, 2019

6th International Conference on Mycology and Fungal Infections

Email: infections@pulsusmeet.net 
Website: https://fungalinfections.cmesociety.com/

Tsu, Japan 
October 1–4, 2019

Asian Mycological Congress 2019

Email: amc2019officer@mycology-jp.org 
Website: http://amcfungi2019.com

Puducherry, India 
November 7–9, 2019

National Conference on ‘Recent Advances in Biodiversity, Biology and Biotechnology of Fungi’ & 
46th Annual Meeting of Mycological Society of India (MSI)

Email: sarmavv@yahoo.com; msi2019pu@gmail.com 
Website: http://fungiindia.co.in
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